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Abstract. We generalize our zero-free regions of the integral derivatives for the Riemann zeta function to the general
fractional derivatives case, and then we apply them to formulate a more precise description of the previously observed
chains of zeros of derivatives.

1 Introduction

Let us start by briefly recalling some simple facts. In 1737, Euler [6] showed that, for real s > 1, one can
write:

ζ(s) :=

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
,

where the Euler product on the right side is extended over all primes. In 1859, Riemann [23] generalized the
definition of ζ(s) to complex values of s, and showed how, by a process of analytic continuation, it can be
extended to a meromorphic function, with a single pole at s = 1.

The idea was made more precise by Stieltjes [27], who explicitly computed the very versatile Laurent
series expansion of ζ(s):

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)nγn
n!

(s− 1)n, (1.1)

where γ0 := limx→∞

(∑
n≤x

1
n − log x

)
= 0.57721 . . . is the well-known Euler constant (see Euler’s [5] of

1734) and for n ≥ 1, the Stieltjes constants γn can be written as (see Berndt’s [1])

γn = lim
m→∞

{
m+1∑
k=1

logn k

k
− logn+1(m+ 1)

n+ 1

}
. (1.2)
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Derivatives

Now, for all k ∈ N, the derivatives ζ(k)(s) of the Riemann zeta function, for s ∈ C with <(s) > 1, are

ζ(k)(s) = (−1)k
∞∑
n=1

(log n)k

ns
, (1.3)

since

d(1/ns)

ds
=
d(e−s logn)

ds
=
d(−s log n)

ds
e−s logn =

− log n

ns
,

so that every new derivative with respect to s introduces an extra factor of (− log n). Similar to the Riemann
zeta function itself, all ζ(k)(s) can be extended to meromorphic functions with a single pole at s = 1; however,
unlike ζ(s), these derivatives have neither Euler products nor functional equations. As a result, their nontrivial
zeros do not lie on a line, but appear to be distributed seemingly at random, the majority of them located to
the right of the critical line σ = 1

2 (cf. [26]).
However, within the apparent randomness of the distribution of zeros of ζ(k)(s), certain intriguing patterns

and structures can be detected. As we have shown in our [2], for sufficiently large values of k we have: a) an
increasing number of zero-free regions in the right half-plane, with surprising vertical periodicity of the zeros
located in the strips between them; and b) with the increasing integer-valued k, the zeros seem to transition (in
an almost periodic fashion, see Figure 1) to the left, creating a lattice-like grid. There seems little doubt that
this ‘movement’ between the zeros of high derivatives is continuous (as we have conjectured in [2]), however
that means that, in order to describe and investigate this intriguing phenomenon, the behavior of the fractional
derivatives needs to be understood first.

Fractional Derivatives

There are several definitions of fractional derivatives, some of which have been applied in the theory of zeta
functions. In 1975 Keiper [16] proved that the Hurwitz zeta functions can be expressed as fractional derivatives
(see [24] and [20]) of the logarithmic derivative of Γ (s), also known as the digamma function; and this work
that was recently generalized to the Lerch zeta functions by Fernandez [12]. Both authors work with the
Riemann-Liouville definition of fractional derivatives. In 2015 Guariglia [14] considered Caputo fractional
derivatives (see [4]) of the Riemann zeta function, but in later work [15] employed the Grünwald-Letnikov
fractional derivative.

Independently, we found that the Grünwald-Letnikov fractional derivative was best suited for proving a
conjecture of Kreminski [17], originally formulated in terms of the Weyl fractional derivative (see [29]).
It is shown (in [7] and [8]) that the fractional Stieltjes constants, defined as the generalization of (1.2) to
α ∈ (0,∞), via

γα = lim
m→∞

{
m+1∑
k=1

logα k

k
− logα+1(m+ 1)

α+ 1

}
,

are the coefficients of a natural generalization of the Laurent expansion (1.1) to the Grünwald-Letnikov frac-
tional derivatives

Dα
s [ζ(s)] = (−1)α

(
Γ (α+ 1)

(s− 1)α+1
+

∞∑
n=1

(−1)nγα+n
n!

(s− 1)n

)
. (1.4)

With this choice of a fractional derivative we have found (in [11] and [22]) new bounds for the fractional
Stieltjes constants that also yield improved bounds for the classical Stieltjes constants. With these bounds we
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established a zero-free region of the fractional derivative of ζ near the pole s = 1 (see [9], Theorem 5.1): For
all α ≥ 0, Dα

s [ζ(s)] 6= 0 in the region |s− 1| < 1.
Now, continuing our work, we investigate the Grünwald-Letnikov fractional derivatives Dα

s [ζ(s)], (with
continuous α ∈ R) on the right half-plane, with the goal of generalizing the zero-free regions from [2] (see
Figure 2). The main result is proved by generalizing the rectangular regions, that contain exactly one zero
(see Figure 3). As a corollary we obtain the existence of continuous curves of zeros of fractional derivatives.

The Grünwald-Letnikov Fractional Derivative

Everywhere below, we employ the reverse αth Grünwald-Letnikov derivative of a function f(z), which is
defined, for any α ∈ C, as

Dα
s [f(s)] = lim

h→0+

(−1)α
∞∑
k=0

(−1)k
(
α
k

)
f(s+ kh)

hα
, (1.5)

whenever the limit exists, where
(
α
k

)
= Γ (α+1)

Γ (k+1)Γ (α−k+1) , and the gamma function Γ (z) :=
∫∞
0 xz−1e−x dx,

for all <(z) > 0. This derivative was introduced by Grünwald [13] in 1867 and simplified by Letnikov in
1869 (see [19] and [18]). Defined this way, the fractional derivatives Dα

s [f(s)] coincide with the standard
derivatives for all α ∈ N and one has:

(a) Dα
s [c] = 0, for all constants c ∈ C.

(b) D0
s [f(s)] = f(s).

(c) Dα
s

[
Dβ
s [f(s)]

]
= Dα+β

s [f(s)], for all α, β ∈ C.

(d) Dα
s [e

ms] = mαems, for m 6= 0.

Properties (a) and (d) yield a fractional generalization of (1.3) to all α > 0 for any s ∈ C with <(s) > 1:

ζ(α)(s) = Dα
s [ζ(s)] = (−1)α

∞∑
n=1

logα(n+ 1)

ns
. (1.6)

As a direct consequence of the Laurent expansion (1.4) of the fractional derivatives we obtain:

(a) The branch cut of the complex logarithm creates a discontinuity in Dα
s [ζ(s)] along (−∞, 1], for all

α 6∈ N.

(b) Dα
s [ζ(s)] is analytic on C \ (−∞, 1]; it is a continuous function of both s and α > 0.

(c) If σ ∈ (1,∞) and α 6∈ N, then Dα
σ [ζ(σ)] is non-real.

(d) For s ∈ C \ (−∞, 1], we have Dα
σ [ζ(s)] = (−1)2αDα

σ [ζ(s)].

Properties (c) and (d) describe the symmetry of locations of the zeros of Dα
σ [ζ(s)] in C, with respect to the

real axis, but not the actual mirroring of properties or the related dynamics.

Note

This preprint has not undergone peer review (when applicable) or any post-submission improvements or cor-
rections. The Version of Record of this article is published in the Lithuanian Mathematical Journal, and is
available online at https://doi.org/10.1007/s10986-022-09551-2.
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72 73 74 75 76 77 78 79 80
σ

10

15

20

25

30

35

t

64 65 66 67 68 69 70  M=2 j=0

90 91 92 93 94 95 96 97 98 99  M=3 j=0

109 110 111 112 113 114 115 116 117 118 119 120  M=4 j=0

126 127 128 129 130 131 132 133 134 135 136 137 138  M=5 j=0

141 142 143 144 145 146 147 148 149 150 151 152 153 154  M=6 j=0

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168  M=7 j=0

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182  M=8 j=0

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194  M=9 j=0

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205  M=10 j=0

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216  M=11 j=0

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227  M=12 j=0
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237  M=13 j=0

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247  M=14 j=0
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256  M=15 j=0

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265  M=16 j=0
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274  M=17 j=0

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283  M=18 j=0270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292  M=19 j=0

64 65 66 67 68 69 70  M=2 j=1

89 90 91 92 93 94 95 96 97 98  M=3 j=1

64 65 66 67 68 69 70  M=2 j=2

Figure 1. Paths of the zeros of the fractional derivatives ζ(α)(σ + it), for 72 < σ < 80 and 0 < t < 40. The zeros of the integral
derivatives ζ(k) are denoted by •k and the labels of the curves reflect the rectangles in which the zeros can be found for sufficiently

large α (see Theorem 2).



Zero-Free Regions of ζ(α)(s) 5

2 Statement of Main Results

Let Qαn(s) := (logn)α/ns denote the n-th term of the Dirichlet series for (−1)αζ(α)(s), so that

(−1)αζ(α)(s) =
∞∑
n=2

logα n

ns
=

∞∑
n=2

Qαn(s). (2.1)

We prove the existence of zero-free regions where one of the terms of (2.1), say QαM (σ), dominates the rest
of the series, that is, when

QαM (σ) >
∑
n6=M

Qαn(σ), (2.2)

and, in a complementary fashion, we look for the zeros of ζ(α)(s) near the regions of the complex plane where
QαM (s) = QαM+1(s), in other words where no term of the series can attain dominance and, in fact, where the
cancellation of terms might happen. This occurs at

qM :=
log
(

logM
log(M+1)

)
log
(

M
M+1

) . (2.3)

Our main goal is to prove a generalization of [2, Theorem 2.1]:

Theorem 1. Let α > 0. We have (see Figure 2):

(a) For all σ > q2α+ 2.6, we have ζ(α)(s) 6= 0.

(b) If q3α+ 4 log 3 < q2α− 2, then ζ(α)(s) 6= 0 for

q3α+ 4 log 3 ≤ σ ≤ q2α− 2.

(c) If M ∈ N, M > 3, and qMα+ (M + 1)u ≤ qM−1α−Mu, then ζ(α)(s) 6= 0 in the regions

qMα+ (M + 1)u ≤ σ ≤ qM−1α−Mu,

where u ∈ (0,∞) is a solution of 1− 1
eu−1 −

1
eu (1 +

1
u) ≥ 0.

Note: The value of u ∈ (0,∞) that gives us the widest zero-free regions is u = 1.1879426249 . . . , which
is the solution of the equation

1− 1

eu − 1
− 1

eu

(
1 +

1

u

)
= 0. (2.4)

Let SαM be the vertical strip between the zero-free regions obtained from the dominance of QαM (qMα) and
QαM+1(qMα) in (2.1), respectively, as described in Theorem 1. The strip SαM exists when α reaches

AM :=

{ 4 log 3+2
q2−q3 if M = 2

(2M+3)u
qM−qM+1

if M > 2.

Lith. Math. J., X(x), 20xx, February 9, 2023,Author’s Version.
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α

20

40

60

80

100

120
σ

M=2 j=0

A3 ≈ 19.53

M=3 j=0

A4 ≈ 73.21

M=4 j=0

A5 ≈ 155.6

M=5 j=0

Qα
2 (s) =

logα2

2s

dominates

M=2 M=3 M=4 M=5
M=6 j=0
M=7 j=0
M=8 j=0

M=9 j=0
M=10 j=0
M=11 j=0
M=12 j=0
M=13 j=0
M=14 j=0
M=15 j=0
M=16 j=0
M=17 j=0
M=18 j=0
M=19 j=0M=20 j=0

Figure 2. Graphical representation of the main results of Theorem 1. The triangles are the zero-free regions where QαM (σ + it)

dominates ζ(α)(σ + it). The curves are made up of zeros of the fractional derivatives of ζ and are labeled by the zero free region to
their right.

Recall that QαM (qMα) = QαM+1(qMα). Considering the imaginary parts of the solutions of QαM (qMα +

it) = QαM+1(qMα+ it) we find that ζ(α)(σ + it) 6= 0 for σ ∈ SαM and

t =
2πJ

log(M + 1)− log(M)
(2.5)

for J ∈ Z. Together with the border of the zero free regions to the left and right of SαM the lines from (2.5),
for J = j and J = j + 1, where j ∈ Z form a contour around the zero

qM · α+
π(2j + 1)

log(M + 1)− log(M)
i (2.6)

of QαM (qMα + it) + QαM+1(qMα + it). Exactly as in [2], Rouché’s theorem immediately shows that there
is exactly one zero of ζ(α) in the rectangular area shown in Figure 3. In other words, a natural generalization
of [2, Theorem 2.2] can be quickly obtained, mutatis mutandis, replacing integer values of k by positive real
numbers α:

Theorem 2. Let M ≥ 2 denote a natural number, j ∈ Z, and α > AM . Let FαM,j ⊂ SαM be given by

2πj

log(M + 1)− log(M)
< t <

2π(j + 1)

log(M + 1)− log(M)
. (2.7)

Then FαM,j contains exactly one zero of ζ(α)(s), and the zero is simple.

Computations conducted with the methods from [10] suggest that the zeros in the regions FαM,j form
continuous, mostly horizontal curves. We observe that the curves of zeros of fractional derivatives passing
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qM+1α+(M+2)u qMα−(M+1)u qMα qM +α(M+1)u qM−1α−Mu
σ

2jπ

log(M+ 1)− logM

(2j+ 1)π

log(M+ 1)− logM

2(j+ 1)π

log(M+ 1)− logM

t

Qα
M+1(s) =

logα(M+1)

(M+1)s

dominates

Fα
M, j

SαM

Qα
M(s) =

logαM

M s

dominates

Figure 3. Regions FαM,j that contains exactly one zero of ζ(α)(σ + it). Rouché’s theorem can be used to establish simplicity of the
zero using the zero of QαM (s) +QαM+1(s) at •.

through the regions FαM,j with j > 0 end at a zeros of ζ(s)− 1 where −1
2 < <(s) < 1.9402 ( [3, Proposition

7] and [25, Theorem 1] respectively), while curves passing through the regions FαM,0 appear to continue over
to the left half plane – see Figure 4.

Far enough to the right the existence of these curves follows from Theorem 2: Let M ∈ Z, M ≥ 2 and
α > AM so that SαM is non empty. Then for each j ∈ Z there is s = σ + it ∈ FαM,j such that ζ(α)(s) = 0. As
s is a simple zero of ζ(α)(s) we have that ζ(α+1)(s) 6= 0. By the implicit function theorem there is an analytic
function z defined on an open neighborhood U ⊂ C of α such that ζ(β)(z(β)) = 0 for β ∈ U . As this holds
for all α > AM we obtain a function z that is analytic on an open neighborhood of (AM ,∞) in C and thus
analytic on (AM ,∞).

Corollary 1. Let M ∈ N with M ≥ 2 and j ∈ Z. The zeros s = σ + it of ζ(α)(s) for α > AM with

2πj

log(M + 1)− log(M)
< t <

2π(j + 1)

log(M + 1)− log(M)

are images of an analytic function z : (AM ,∞)→ C.

3 Preliminary Lemmas

In our proof of Theorem 1 we follow, with some modifications, the general approach developed in order to
establish [2, Theorem 2.1]. We show that ζ(α)(s) has no zeros if (α, σ) in the ασ-plane lies in one of the

Lith. Math. J., X(x), 20xx, February 9, 2023,Author’s Version.
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wedges given by

qMα+ b1 ≤ σ ≤ qM−1α+ b2

for constants b1, b2 ∈ R, chosen in a way that guarantees the dominance (in the modulus) of the termQαM (s) =
logαM
Ms of the series for ζ(α)(s), see Figure 2. We call the remaining terms of the series the ‘head’

Hα
M (s) :=

M−1∑
n=2

Qαn(s) =

M−1∑
n=2

logα n

ns

and the ‘tail’

TαM (s) :=

∞∑
n=M+1

Qαn(s) =

∞∑
n=M+1

logα n

ns
.

The key idea is to show that in our well-defined regions

|ζ(α)(s)| ≥ QαM (σ)−Hα
M (σ)− TαM (σ)

= QαM (σ)

(
1−

Hα
M

QαM
(σ)−

TαM
QαM

(σ)

)
> 0, (3.1)

thus proving that ζ(α)(s) does not vanish.
In order to find suitable upper bounds to the tails TαM (σ), a couple of preliminary bounds are needed. We

begin with the following lemma:

Lemma 1. Fix 2 ≤M ∈ N, and assume α < (σ − 1) logM. Then

TαM (σ) =

∞∑
n=M+1

logα n

nσ
≤
∫ ∞
M

logα x

xσ
dx ≤ QαM (σ)RαM (σ), (3.2)

where

RαM (σ) =
M

σ − 1

(
1 +

α

(σ − 1) logM − α

)
.

Proof First, for the upper incomplete Gamma function we have the bound (see [21, (3.2)]): Γ (a, x) <
Bxa−1e−x, valid for all B > 1, a > 1 and x > B(1−a)

1−B . This means that we can write:

TαM (σ) =

∞∑
n=M+1

logα n

nσ
≤
∫ ∞
M

logα x

xσ
dx =

Γ (α+ 1, (σ − 1) log(M))

(σ − 1)α+1

<
B((σ − 1) log(M))α+1−1e−(σ−1) log(M)

(σ − 1)α+1
=

logαM

Mσ

M

σ − 1
B.

Here, with the choice of x = (σ − 1) log(m) and a = α+ 1 in x > B(1−a)
1−B , we can obtain a lower bound for

B:

B >
(σ − 1) logm

(σ − 1) logm− α
= 1 +

α

(σ − 1) logm− α
,
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and if we set B := 1 + ε+ α
(σ−1) logM−α , for any ε > 0, then we get:

TαM (σ) <
logαM

Mσ

M

σ − 1

(
1 + ε+

α

(σ − 1) logM − α

)
.

Letting ε→ 0 this bound becomes

TαM (σ) ≤ logαM

Mσ

M

σ − 1

(
1 +

α

(σ − 1) logM − α

)
,

which proves the lemma. ut
Next, we find a bound for RαM (σ). We have:

Lemma 2. If a1α+ b1 ≤ σ and A ≤ α and a1 > 1
logM , then

RαM (σ) ≤ RαM (a1α+ b1) ≤ RAM (a1α+ b1) ≤ RAM (a1A+ b1), (3.3)

Proof The left inequality of (3.3) is evident from the fact that RαM (σ) is decreasing when viewed as a
function of σ alone. The right inequality is equivalent to RαM (σ) being decreasing as a function of α. To see
this we set c := a1 logM − 1 ≥ 0 and d := (b1 − 1) logM , and get

y(α) :=
1

M logM
RαM (a1α+ b1)

=
1

M logM

M

a1α+ b1 − 1

(
1 +

α

(a1α+ b1 − 1) logM − α

)
=

1

(c+ 1)α+ d

(c+ 1)α+ d

cα+ d
=

1

cα+ d

But since y′(α) =
−c

(cα+ d)2
< 0, it follows that y(α) is decreasing. ut

Note: In what follows, we apply the estimates for TαM (σ) from Lemma 1 in the proof of Theorem 1 via the
useful separation

TαM (σ) = QαM+1(σ) + TαM+1(σ)

≤ QαM+1(σ)(1 +RαM+1(σ))

≤ QαM (qMα+ b1)(1 +RαM+1(qMα+ b1)),

which holds since QαM+1(σ) ≤ QαM (σ). The series with these RαM+1(qMα + b1) converges because, by [2,
Lemma 3.1], qM > 1/ log(M + 1).

4 Proof of Theorem 1

We conclude with the proof of Theorem 1 and some immediate consequences.
Proof of Theorem 1 (a) We consider the case where Qα2 (σ) =

logα(2)
2σ is the dominant term of ζ(α)(s), that

is in (3.1) we have M = 2. We show that, for all real α > 0 and all σ > q2α + 2.6, we have ζ(α)(s) 6= 0.

Lith. Math. J., X(x), 20xx, February 9, 2023,Author’s Version.
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1 2 3 4 5 6 7 8
σ

10

20

30

40

50

t

11 12 13 14 15 16 17 18 19 20 21 22  M=5 j=0

8 9 10 11 12 13 14 15 16 17  M=4 j=0

5 6 7 8 9 10 11 12  M=3 j=0

3 4 5 6 7  M=2 j=0

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91  M=21 j=0

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87  M=20 j=0

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82  M=19 j=0

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78  M=18 j=0

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74  M=17 j=0

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70  M=16 j=0

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  M=15 j=0

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61  M=14 j=0

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57  M=13 j=0

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  M=12 j=0

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  M=11 j=0

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  M=10 j=0

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  M=9 j=0

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  M=8 j=0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  M=7 j=0

14 15 16 17 18 19 20 21 22 23 24 25 26  M=6 j=0

1 2 3 4 5 6
 M=2 j=1

1 2 3 4 5 6  M=2 j=2

1 2 3 4 5 6 7
 M=2 j=3

1 2 3 4 5 6 7 8
 M=3 j=1

1 2 3 4 5 6 7 8 9 10
 M=4 j=1

1 2 3 4 5 6 7 8 9 10 11  M=5 j=1

1 2 3 4 5 6 7
 M=3 j=2

Figure 4. Selected curves of zeros of the fractional derivatives ζ(α)(σ + it). Zeros of ζ(σ + it) are denoted by •, zeros of
ζ(σ + it)− 1 are denoted by x and zeros of the integral derivatives ζ(k)(σ + it) are denoted by •k.
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First, write

|ζ(α)(s)| ≥ logα 2

2σ
− Tα2 (σ)

≥ Qα2 (σ)
(
1− Qα3

Qα2
(σ)− Qα4

Qα2
(σ) (1 +Rα4 (σ))

)
.

By Lemma 2 for A ≥ α we have

Rα4 (σ) ≤ Rα4 (q2A+ b)

≤ RA4 (q2A+ b) =
4

q2A+ b− 1

(
1 +

A

(q2A+ b− 1) log 4−A

)
Furthermore,

Qα4
Qα2

(σ) =
2σ(log 4)α

4σ(log 2)α
=

2σ(2 log 2)α

22σ(log 2)α
= 2α−σ ≤ 2α−q2α−b ≤ 2(1−q2)A−b.

Now, the quotient Q
α
3

Qα2
(σ) is decreasing in σ, and as one can easily verify

QαM+1

QαM
(qMα+ b1) =

(
M

M + 1

)b1
and

QαM−1
QαM

(qM−1α+ b2) =

(
M

M − 1

)b2
.

for all M ≥ 2 and real numbers b1 and b2. Therefore,

Qα3
Qα2

(σ) ≤ Qα3
Qα2

(q2α+ b) =

(
2

3

)b
.

For A = 0 and α > A and b = 2.6 and σ ≥ q2α+ b we get

1− Qα3
Qα2

(σ)− Qα4
Qα2

(σ) (1 +Rα4 (σ)) ≥ 1− 0.349− 0.165(1 + 2.501) > 0.

Thus for all real α > 0 and all σ ≥ q2α+ 2.6 we have ζ(α)(s) 6= 0. ut
Theorem 1 (a) generalizes Verma & Kaur’s bound [28] to fractional derivatives. Our bound is a bit weaker

than theirs, as we consider any α > 0 instead of α ≥ 3. Smaller values of b in the proof of Theorem 1 (a) yield
tighter bounds that hold for greater α. In particular, any b > 0 yields a bound that holds for all sufficiently
large values of α. With b = 2 we obtain the bound proved in [28] for α ≥ 3.

Corollary 2. For any b > 0 there is an A ∈ R such that for all α > A we have ζ(α)(s) 6= 0, for all s = σ+ it
with σ ≥ q2α+ b.

Proof Let b > 0. For estimating Rα4 (q2α+ b) we set A := 0 and α = 1/q2. We obtain Rα4 (q2α+ b) ≤ 4
b . We

use the bounds from the proof of Theorem 1 (a). We have ζ(α)(s) 6= 0 for σ ≥ q2α+ b when(
2

3

)b
+ 2(1−q2)α−b

(
1 +

4

b

)
< 1

Lith. Math. J., X(x), 20xx, February 9, 2023,Author’s Version.
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Solving for α we obtain

α >
b+ log2

1−(2/3)b
1+4/b

1− q2
.

as desired. ut
Proof of Theorem 1 (b) In the case M = 3 we have ζ(α)(s) 6= 0 for

q3α+ 4 log 3 ≤ σ ≤ q2α− 2.

For this zero-free region we require q3α+ 4 log 3 ≤ q2α− 2 which implies α ≥ 19.5311 . . . . Separating the
dominant term Qα3 (σ), we get

|ζ(α)(s)| ≥ Qα3 (σ)−Qα2 (σ)− Tα3 (σ)

≥ Qα3 (σ)
(
1− Qα2

Qα3
(σ)− Qα4

Qα3
(σ) (1 +Rα4 (σ))

)
.

Therefore we only need to show that

1− Qα2
Qα3

(σ)− Qα4
Qα3

(σ) (1 +Rα4 (σ)) > 0.

But notice that by Lemma 2,

Rα4 (σ) ≤ Rα4 (α3α+ 4 log 3) ≤ Rα3

4 (q3α+ 4 log 3) < 0.7848,

for σ ≥ q3α+ 4 log 3 and α ≥ α3 =
4 log 3+2
q2−q3 = 19.5311 . . . . Also,

Qα4
Qα3

(σ) ≤ Qα4
Qα3

(q3α+ 4 log 3) < 0.29 and
Qα2
Qα3

(σ) ≤ Qα2
Qα3

(q2α− 2) < 0.45.

Putting this together we obtain

1− Qα2
Qα3

(σ)− Qα4
Qα3

(σ) ((1 +Rα4 (σ)) > 1− 0.45− 0.29(1 + 0.75) > 0,

which concludes our proof. ut
Before we get to the main argument of the proof of Theorem 1(c), let us perform a technical transformation.

We rewrite the series (1.6) as

Hα
M (σ) = QαM (σ)

(
QαM−1
QαM

(σ) +
QαM−2
QαM

(σ) + · · ·+ Qα2
QαM

(σ)

)
= QαM (σ)

(
QαM−1
QαM

(σ)

(
1+

QαM−2
QαM−1

(σ)

(
1+. . .

(
1+

Qα2
Qα3

(σ)

)
. . .

)))
. (4.1)

with the hope of finding bounds for Q
α
n−1

Qαn
(σ). Observe that because

Qαn−1
Qαn

(σ) =

(
log(n− 1)

log n

)α( n

n− 1

)σ
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the quotient H
α
M

QαM
(σ) increases with σ. That means that, for 2 ≤ n ≤M and σ ≤ qM−1α+ b2, we can write

Qαn−1
Qαn

(σ) ≤
Qαn−1
Qαn

(qM−1α+ b2) ≤
Qαn−1
Qαn

(qn−1α+ b2) =

(
n

n− 1

)b2
,

where the second inequality holds since qM−1 < qn for n ≤M and the equality holds because σ = qn−1α is
the solution of Qαn(σ) = Qαn−1(σ). Thus, in order for H

α
M

QαM
(σ) to stay bounded, we must choose b2 < 0.

By [2, Lemma 4.4] we have, for 2 ≤ n ≤M and σ ≤ qM−1α− uM ,

Qαn−1
Qαn

(σ) ≤
(

n

n− 1

)−uM
≤
(

M

M − 1

)−uM
≤ 1

eu
.

Combined with the equation (4.1), this yields

Hα
M

QαM
(σ) ≤

∞∑
n=1

1

(eu)n
=

1

1− 1
eu
− 1 =

1

eu − 1
. (4.2)

We are now ready to prove the final part (c) of Theorem 1.
Proof of Theorem 1 (c) Let α > 0. We show that ifM ∈ N, M > 3, and qMk+(M+1)u ≤ qM−1k−Mu

then ζ(α)(s) 6= 0 for

qMα+ (M + 1)u ≤ σ ≤ qM−1α−Mu.

where u ∈ (0,∞) is a solution of 1− 1
eu−1 −

1
eu (1 +

1
u) ≥ 0. Similar to the proof of Theorem 1 (b) we write∣∣∣ζ(α)(s)∣∣∣ ≥ QαM (σ)−Hα

M (σ)− TαM (σ)

≥ QαM (σ)

(
1−

Hα
M

QαM
(σ)−

QαM+1

QαM
(σ)
(
1 +RαM+1(σ)

))
.

Now, notice that

RαM (σ) :=
M

σ − 1

(
1 +

α

(σ − 1) logM − α

)
<

1

u

is equivalent to (σ − 1)2 logM − (σ − 1)(uM logM + α) > 0 and this quadratic inequality is satisfied
whenever σ > 1 + uM + α

logM . Thus, by Lemma 2, for σ ≥ qMα + u(M + 1), α ≥ αM := (2M+1)u
qM−1−qM , and

M ≥ 4, we have

RαM+1(σ) ≤ R
αM
M+1(qMαM + u(M + 1)) <

1

u
.

But by [2, Lemma 4.4]
(
n−1
n

)cn is monotonously increasing with the asymptote 1/ec. And therefore

QαM+1

QαM
(qMα+ u(M + 1)) =

(
M

M + 1

)u(M+1)

<
1

eu
.

Finally, with the help of the bound (4.2), we can see, that for M ≥ 4 and qMα + u(M + 1) ≤ σ ≤
qM−1α+ uM , we have

1−
Hα
M

QαM
(σ)−

QαM+1

QαM
(σ) (1 +RαM (σ)) > 1− 1

eu − 1
− 1

eu

(
1 +

1

u

)
≥ 0,
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which completes the proof of the theorem. ut
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pour résoudre ces quéstions., J. Ecole Polytech, 13:1–69, 1832.

21. Pierpaolo Natalini and Biagio Palumbo, Inequalities for the incomplete gamma function, Math. Inequal. Appl.,
3(1):69–77, 2000, ISSN 1331-4343, http://dx.doi.org/10.7153/mia-03-08.

22. Sebastian Pauli and Filip Saidak, A bound for Stieltjes constants, preprint, 2021.
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